Cayley graphs: Symmetries, quantizations, duality

Quantum group seminar

Cayley graphs

Group
$$\Gamma$$
, set $S \subset \Gamma$ \rightarrow $V = \Gamma$, $E = \{(g, kg) \mid g \in \Gamma, k \in S\}$.
$$A_{gh} = \begin{cases} 1 & g = kh \text{ for some } g \in \Gamma, \\ 0 & \text{otherwise.} \end{cases}$$

Cayley graphs

Group
$$\Gamma$$
, set $S \subset \Gamma$ \rightarrow $V = \Gamma$, $E = \{(g, kg) \mid g \in \Gamma, k \in S\}$.
$$A_{gh} = \begin{cases} 1 & g = kh \text{ for some } g \in \Gamma, \\ 0 & \text{otherwise.} \end{cases}$$

Hypercube

Take
$$\Gamma = \mathbb{Z}_2^n = \{(i_1, ..., i_n) \mid i_1, ..., i_n = 0, 1\}$$
, denote $\epsilon_i = (0, ..., 0, 1, 0, ..., 0)$ and take $S = \{\epsilon_i\}_{i=1}^n$.

Quantum automorphism group of a graph

$$C(\operatorname{Aut}^+ G) = C^*(u_{ij} \mid uu^* = 1 = u^*u, m(u \otimes u) = um, u\eta = \eta, uA = Au).$$

-[Banica '05]

Group
$$\Gamma$$
, set $S \subset \Gamma$ \rightarrow $V = \Gamma$, $E = \{(g, kg) \mid g \in \Gamma, k \in S\}$.

$$A_{gh} = \begin{cases} 1 & g = kh \text{ for some } g \in \Gamma, \\ 0 & \text{otherwise.} \end{cases}$$

If Γ is abelian, then $\operatorname{Irr} \Gamma$ forms an eigenbasis for A. Given $\chi \in \operatorname{Irr} \Gamma$, we have

$$\lambda_{\chi} = \sum_{k \in S} \chi(k^{-1}).$$

[Lovász '75, Babai '79]

Cayley graphs

If Γ is abelian, then $\operatorname{Irr} \Gamma$ forms an eigenbasis for A. Given $\chi \in \operatorname{Irr} \Gamma$, we have

$$\lambda_{\chi} = \sum_{k \in S} \chi(k^{-1}).$$

-[Lovász '75, Babai '79]

Hypercube

Take $\Gamma = \mathbb{Z}_2^n = \{(i_1, \dots, i_n) \mid i_1, \dots, i_n = 0, 1\}$, denote $\epsilon_i = (0, \dots, 0, 1, 0, \dots, 0)$ and take $S = \{\epsilon_i\}_{i=1}^n$.

$$\chi_{(j_1,...,j_n)}(i_1,...,i_n) = (-1)^{i_1j_1+...+i_nj_n}$$

$$\lambda_{(j_1,...,j_n)} = \sum_{k=1}^n (-1)^{j_k} = n - 2\#\{\text{non-zero } j_i\text{'s}\}.$$

 \rightarrow Eigenspaces $V_k = \text{span}\{\chi_{(j_1,...,j_n)} \mid \text{exactly } k \ j_i$'s are non-zero}.

Quantum automorphism group of a graph

$$C(\operatorname{Aut}^+ G) = C^*(u_{ij} \mid uu^* = 1 = u^*u, m(u \otimes u) = um, u\eta = \eta, uA = Au).$$

-[Banica '05]

Quantum automorphism group of a graph

$$C(\operatorname{Aut}^+ G) = C^*(u_{ij} \mid uu^* = 1 = u^*u, m(u \otimes u) = um, u\eta = \eta, uA = Au).$$

-[Banica '05]

Intertwiners in the basis (χ_g):

$$A\chi_g = \lambda_g \chi_g, \qquad m(\chi_g \otimes \chi_h) = \chi_{gh}, \qquad \eta = \chi_e.$$

Quantum automorphism group of a graph

$$C(\operatorname{Aut}^+ G) = C^*(u_{ij} \mid uu^* = 1 = u^*u, m(u \otimes u) = um, u\eta = \eta, uA = Au).$$

-[Banica '05]

Intertwiners in the basis (χ_{g}):

$$A\chi_g = \lambda_g \chi_g, \qquad m(\chi_g \otimes \chi_h) = \chi_{gh}, \qquad \eta = \chi_e.$$

Hypercube

Take $\Gamma = \mathbb{Z}_2^n = \{(i_1, \dots, i_n) \mid i_1, \dots, i_n = 0, 1\}$, denote $\epsilon_i = (0, \dots, 0, 1, 0, \dots, 0)$ and take $S = \{\epsilon_i\}_{i=1}^n$. \rightarrow Eigenspaces $V_k = \text{span}\{\chi_{(j_1, \dots, j_n)} \mid \text{exactly } k \ j_i$'s are non-zero $\}$.

$$\operatorname{Aut}^+ Q_n = O_n^{-1}$$

-[Banica-Bichon-Collins '07]

Some other Cayley graphs

Denote
$$\mathbb{Z}_m^n = \{(i_1, \dots, i_n) \mid i_1, \dots, i_n = 0, \dots, m-1\}, \quad \epsilon_i = (0, \dots, 0, 1, 0, \dots, 0), \quad \iota = (1, 1, \dots, 1)$$

Hypercube Q_n

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \quad \rightarrow \quad \text{inv. subspaces } V_k = \text{span}\{\chi_{\epsilon_{i_1}\cdots\epsilon_{i_k}}\}_{i_1<\cdots< i_k} \text{ (i.e. } V_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n)$$

Halved/squared hypercube $\frac{1}{2}Q_{n+1} = Q_n^2$

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \cup \{\epsilon_i \epsilon_j\}_{i < j} \rightarrow \text{inv. subspaces } V_k + V_{n+1-k} \text{ (i.e. } \tilde{V}_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n \cup \{\chi_i\})$$

$$Aut^{+} \frac{1}{2}Q_{n+1} = SO_{n+1}^{-1}$$

LHM-

Some other Cayley graphs

Denote
$$\mathbb{Z}_m^n = \{(i_1, \dots, i_n) \mid i_1, \dots, i_n = 0, \dots, m-1\}, \quad \epsilon_i = (0, \dots, 0, 1, 0, \dots, 0), \quad \iota = (1, 1, \dots, 1)$$

Hypercube Q_n

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \quad \rightarrow \quad \text{inv. subspaces } V_k = \text{span}\{\chi_{\epsilon_{i_1}\cdots\epsilon_{i_k}}\}_{i_1<\cdots< i_k} \text{ (i.e. } V_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n)$$

Halved/squared hypercube $\frac{1}{2}Q_{n+1} = Q_n^2$

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \cup \{\epsilon_i \epsilon_j\}_{i < j} \quad \rightarrow \quad \text{inv. subspaces } \tilde{V}_k = V_k + V_{n+1-k} \text{ (i.e. } \tilde{V}_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n \cup \{\chi_l\})$$

Folded hypercube FQ_{n+1}

$$\Gamma = \mathbb{Z}_2^n$$
, $S = \{\epsilon_i\}_{i=1}^n \cup \{i\} \rightarrow \text{inv. subspaces } V_{2k-1} + V_{2k} \text{ (i.e. } \tilde{V}_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n \cup \{\chi_{\epsilon_i \epsilon_i}\}_{i < j})$

$$Aut^{+} FQ_{n+1} = PO_{n+1}^{-1}$$

Some other Cayley graphs

Denote
$$\mathbb{Z}_m^n = \{(i_1, \dots, i_n) \mid i_1, \dots, i_n = 0, \dots, m-1\}, \quad \epsilon_i = (0, \dots, 0, 1, 0, \dots, 0), \quad \iota = (1, 1, \dots, 1)$$

Hypercube Q_n

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \quad \rightarrow \quad \text{inv. subspaces } V_k = \text{span}\{\chi_{\epsilon_{i_1}\cdots\epsilon_{i_k}}\}_{i_1<\cdots< i_k} \text{ (i.e. } V_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n)$$

Halved/squared hypercube $\frac{1}{2}Q_{n+1} = Q_n^2$

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \cup \{\epsilon_i \epsilon_j\}_{i < j} \quad \to \quad \text{inv. subspaces } V_k + V_{n+1-k} \text{ (i.e. } \tilde{V}_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n \cup \{\chi_l\})$$

Folded hypercube FQ_{n+1}

$$\Gamma = \mathbb{Z}_2^n, S = \{\epsilon_i\}_{i=1}^n \cup \{i\} \quad \to \quad \text{inv. subspaces } V_{2k-1} + V_{2k} \text{ (i.e. } \tilde{V}_1 = \text{span}\{\chi_{\epsilon_i}\}_{i=1}^n \cup \{\chi_{\epsilon_i \epsilon_i}\}_{i < j})$$

Hamming graph H(n,m)

$$\Gamma = \mathbb{Z}_m^n, S = \{\epsilon_i^j\}_{i=1,\dots,n; j=1,\dots,m} \rightarrow \text{inv. subspaces } V_k = \text{span}\{\chi_{\epsilon_{i_1}^{j_1} \cdots \epsilon_{i_k}^{j_k}}\}_{i_1 < \dots < i_k; j_1,\dots,j_k = 1,\dots,m-1} \text{ (i.e. } V_1 = \text{span}\{\chi_{\epsilon_i}^j\}_{i=1,\dots,n; j=1,\dots,m-1})$$

Anticommutative hypercube

For the classical hypercube, we have vertex set $\Gamma = \mathbb{Z}_2^n$, so

$$C(\Gamma) = C^*(e_i \mid e_i e_j = \delta_{ij} e_i, e_i^* = e_i)$$

$$= C^*(\chi_g, g \in \Gamma \mid \chi_g \chi_h = \chi_{gh}, \chi_{g^{-1}} = \chi_g^*)$$

$$= C^*(\chi_i \mid \chi_i \chi_j = \chi_j \chi_i, \chi_i^2 = 1, \chi_i^* = \chi_i)$$

Anticommutative hypercube

For the classical hypercube, we have vertex set $\Gamma = \mathbb{Z}_2^n$, so

$$C(\Gamma) = C^*(e_i \mid e_i e_j = \delta_{ij} e_i, e_i^* = e_i)$$

$$= C^*(\chi_g, g \in \Gamma \mid \chi_g \chi_h = \chi_{gh}, \chi_{g^{-1}} = \chi_g^*)$$

$$= C^*(\chi_i \mid \chi_i \chi_j = \chi_j \chi_i, \chi_i^2 = 1, \chi_i^* = \chi_i)$$

Twist:

$$C(\breve{\Gamma}) = C^*(\chi_i \mid \chi_i \chi_j = -\chi_j \chi_i, \chi_i^2 = 1, \chi_i^* = \chi_i)$$

Twisting Cayley graphs of abelian groups

A *finite quantum space* X is given by a finite-dimensional C^* -algebra C(X). Every such algebra is equipped by a unique structure of a special symmetric Frobenius algebra. The associated Hilbert space is denoted by $l^2(X)$. It induces an operation on linear operators $A, B: l^2(X) \to l^2(X)$ by $A \cdot B = m(A \otimes B)m^{\dagger}$ called the *Schur product*.

A directed quantum graph is a quantum space X equipped with an adjacency operator $A: l^2(X) \to l^2(X)$ satisfying $A \cdot A = A = A^*$.

Twisting Cayley graphs of abelian groups

A *finite quantum space* X is given by a finite-dimensional C^* -algebra C(X). Every such algebra is equipped by a unique structure of a special symmetric Frobenius algebra. The associated Hilbert space is denoted by $l^2(X)$. It induces an operation on linear operators $A, B: l^2(X) \to l^2(X)$ by $A \cdot B = m(A \otimes B)m^{\dagger}$ called the *Schur product*.

A directed quantum graph is a quantum space X equipped with an adjacency operator $A: l^2(X) \to l^2(X)$ satisfying $A \cdot A = A = A^*$.

Recall
$$C(\Gamma) = C^*(\chi_g, g \in \Gamma \mid \chi_g \chi_h = \chi_{gh}, \chi_{g^{-1}} = \chi_g^*).$$

For any unitary bicharacter σ on Γ , define $C(\check{\Gamma}) = C^*(\chi_g, g \in \Gamma \mid \sigma_{gh}\chi_g\chi_h = \chi_{gh}, \chi_{g^{-1}} = \chi_g^*)$.

Define
$$A: C(\check{\Gamma}) \to C(\check{\Gamma})$$
 by $A\chi_g = \lambda_g \chi_g$ with $\lambda_g = \sum_{k \in S} \chi_g(k^{-1})$.

Let Γ be a finite abelian group, σ a unitary bicharacter on Γ and $S \subset \Gamma$. Then the adjacency operator given as above defines a directed quantum graph on $\check{\Gamma}$, which is quantum isomorphic to the classical Cayley graph $Cay(\Gamma, S)$. Its quantum automorphism group is the 2-cocycle twist of the quantum automorphism group Aut^+ $Cay(\Gamma, S)$ of the classical Cayley graph $Cay(\Gamma, S)$.

Association schemes

Association scheme

Consider the set $X = \{1, ..., n\}$ with $n \in \mathbb{N}$. A *d*-class association scheme over X is a set

$$\mathbf{A} = \{A_0, A_1, \dots, A_d\}$$
 of $n \times n$ matrices A_i such that

- 1. All A_i have entries in $\{0, 1\}$,
- 2. $A_0 = I$,

DEFINITION

- 3. $\sum_{i=0}^{d} A_i = J$, where J is the all ones matrix
- 4. $A_i^{\mathrm{T}} \in \mathbf{A}$ for every i,
- 5. $A_i A_i \in \text{span } \mathbf{A} \text{ for every } i, j,$

Distance regular graph

High A graph is called distance regular if partitioning pairs of vertices according to their distance forms an association scheme.

Translation association scheme A translation association scheme $A = \{A_i\}$ over some group Γ such that all A_i are Cayley.

Translation association schemes and duality

Consider the set $X = \{1, ..., n\}$ with $n \in \mathbb{N}$. A d-class association scheme over X is a set $\mathbf{A} = \{A_0, A_1, ..., A_d\}$ of $n \times n$ adjacency matrices A_i such that $A_0 = I$, $\sum_{i=0}^d A_i = J$, $A_i^T \in \mathbf{A}$, $A_i A_j \in \operatorname{span} \mathbf{A}$.

 \vdash A *translation association scheme* is an association scheme $\mathbf{A} = \{A_i\}$ over some group Γ such that \vdash all A_i are Cayley (corresponding to some sets $S_i \subset \Gamma$).

The characters χ_g of Γ form a common eigenbasis of **A**. So, we can denote the common eigenspaces by

$$V_j = \operatorname{span}\{\chi_g \mid g \in \tilde{S}_j\}.$$

Claim. The sets \hat{S}_i define a new translation association scheme called the *dual*.

Duality for groups vs. schemes

Abelian groups:

 $l^2(\Gamma) = \operatorname{span}\{e_g\}_{g \in \Gamma}$ is equipped with two products:

$$e_g \cdot e_h = \delta_{gh} e_g, \qquad e_g * e_h = e_{gh}.$$

Change of basis (Fourier transform) swaps the products:

$$\chi_g \cdot \chi_h = \chi_{gh}, \qquad \chi_g * \chi_h = n\delta_{gh}\chi_g.$$

Group schemes:

Let Γ be a group. We associate to it a *group scheme* given by $\mathbf{A} = \{A^g\}_{g \in \Gamma}$, where A^g is the Cayley Γ graph of $S = \{g\}$.

Observe: We have $A^g e_h = e_{gh} = e_g * e_h$. Moreover,

$$A^{g}A^{h} = A^{gh}, \qquad A^{g} \cdot A^{h} = \delta_{gh}A^{g}.$$

Duality for groups vs. schemes

Abelian groups:

$$e_g \cdot e_h = \delta_{gh} e_g, \qquad e_g * e_h = e_{gh} \qquad \rightarrow \qquad \chi_g \cdot \chi_h = \chi_{gh}, \qquad \chi_g * \chi_h = n \delta_{gh} \chi_g.$$

Duality for groups vs. schemes

Abelian groups:

$$e_g \cdot e_h = \delta_{gh} e_g, \qquad e_g * e_h = e_{gh} \qquad \rightarrow \qquad \chi_g \cdot \chi_h = \chi_{gh}, \qquad \chi_g * \chi_h = n \delta_{gh} \chi_g.$$

Group schemes:

Taking $S = \{g\}$ means $A^g e_h = e_g * e_h$. Then

$$A^g A^h = A^{gh}, \qquad A^g \cdot A^h = \delta_{gh} A^g.$$

Translation schemes

In general, taking any *S*, we have $Ae_h = \sum_{k \in S} e_{kh} = (\sum_{k \in S} e_k) * e_h$.

Duality for quantum groups and quantum group schemes

Cocommutative quantum association scheme

Let X be a finite quantum space. A d-class cocommutative quantum association scheme (CQAS) is a set $\mathbf{A} = \{A_0, A_1, \dots, A_d\}$ with $A_i: l^2(X) \to l^2(X)$ such that

- 1. $A_i = A_i^*$, $A_i \cdot A_i = A_i$ for every i,
- 1. $A_i = A_i^*, A_i$ 2. $A_0 = I,$ 3. $\sum_{i=0}^{d} A_i = J,$ 4. $A_i^{\dagger} \in \mathbf{A}$ for e
 - 4. $A_i^{\dagger} \in \mathbf{A}$ for every i,
 - 5. $A_i A_i \in \text{span } \mathbf{A} \text{ for every } i, j$.

-[G. '24]

Finite quantum group

A finite quantum group Γ is determined by a finite-dimensional Hopf *-algebra $C(\Gamma)$

 \rightarrow two kinds of multiplication in $l^2(G)$: $x \cdot y$, $x \cdot y$.

We define the *dual quantum group* by swapping the two products.

Duality for quantum groups and quantum group schemes

Cocommutative quantum association scheme

Let X be a finite quantum space. A d-class cocommutative quantum association scheme (CQAS) is a set $\mathbf{A} = \{A_0, A_1, \dots, A_d\}$ with $A_i : l^2(X) \to l^2(X)$ such that $A_i = A_i^*$, $A_i \bullet A_i = A_i$, $A_i \bullet A_i \bullet A_i$

[G. '24]

Finite quantum group

A finite quantum group Γ is determined by a finite-dimensional Hopf *-algebra $C(\Gamma)$

 \rightarrow two kinds of multiplication in $l^2(G)$: $x \cdot y$, $x \cdot y$.

Cayley quantum graph

For any $p \in l^2(\Gamma)$ such that $p \cdot p = p = p^*$, the map $x \mapsto p \cdot x$ defines a quantum graph. We call it the Cayley quantum graph.

Quantum translation association scheme

A translation QCAS over some quantum group Γ means that all A_i are Cayley.

Example: Complete bipartite graph

Example: Complete bipartite graph – Cayley w.r.t.

$$\Gamma = \mathbb{Z}_n \times \mathbb{Z}_2$$

$$S_0 = \{(0,0)\}$$
 $S_1 = \{(i,1) \mid i \in \mathbb{Z}_n\}$

$$\oint \oint S_2 = \{(i,0) \mid i \in \mathbb{Z}_n \setminus \{0\}\}$$

$$\lambda_{(i,j)} = \sum_{(a,b)\in S} \tau_{(i,j)}(a,b)^{-1} = (-1)^j \sum_{a=0}^{n-1} \omega^{ia} = \begin{cases} 0 & i \neq 0, \\ n & i = 0, j = 0, \\ -n & i = 0, j = -1. \end{cases}$$

 $\tilde{S}_1 = \{(i,j) \mid i \neq 0\}$

Example: Complete bipartite graph – Cayley w.r.t.

$$\Gamma = \mathbb{Z}_n \times \mathbb{Z}_2$$

$$S_0 = \{(0,0)\}$$

$$S_1 = \{(i, 1) \mid i \in \mathbb{Z}_n\}$$
 $S_2 = \{(i, 0) \mid i \in \mathbb{Z}_n \setminus \{0\}\}$

$$\alpha = \alpha$$

$$\alpha_1 = \{(i, 1) \mid i \in \mathbb{Z}_p \}$$

$$\alpha_1 = \sum_{i \in \mathbb{Z}_n} e_{(i, 1)}$$

$$\alpha_2 = \sum_{i \neq 0} e_{(i,0)}$$

$$\alpha_0 = e_{(0,0)}$$

$$\lambda_{(i,j)} = \sum_{(a,b)\in S} \tau_{(i,j)}(a,b)^{-1} = (-1)^j \sum_{a=0}^{n-1} \omega^{ia} = \begin{cases} 0 & i \neq 0, \\ n & i = 0, j = 0, \\ -n & i = 0, j = -1 \end{cases}$$

$$\tilde{S}_0 = \{(0,0)\}$$

$$\tilde{S}_1 = \{(i,j) \mid i \neq 0\}$$

$$\tilde{S}_2 = \{(0, -1)\}$$

$$\tilde{S}_0 = \{(0,0)\} \qquad \qquad \tilde{S}_1 = \{(i,j) \mid i \neq 0\} \qquad \qquad \tilde{S}_2 = \{(0,-1)\}$$

$$\epsilon_0 = \chi_{(0,0)} = \alpha_0 + \alpha_1 + \alpha_2 \qquad \epsilon_1 = \sum_{i \neq 0} \chi_{(i,j)} = (2n-2)\alpha_0 - 2\alpha_2 \qquad \epsilon_2 = \chi_{(0,1)} = \alpha_0 - \alpha_1 + \alpha_2$$

Example: Complete bipartite graph – Cayley w.r.t. D_n

$$S_{0} = \{e\}$$

$$\alpha_{0} = e_{e}$$

$$S_{1} = \{sr^{k} \mid k = 0, ..., n - 1\}$$

$$S_{2} = \{r^{k} \mid k = 1, ..., n - 1\}$$

$$\alpha_{2} = \sum_{k=1}^{n-1} e_{r^{k}}$$

$$\alpha_{3} = \sum_{k=1}^{n-1} e_{r^{k}}$$

Eigenvalues and eigenspaces do not depend on Γ , so the following is a basis of span $\{\alpha_0, \alpha_1, \alpha_2\} \subset \mathbb{C}D_4$ by orthogonal projections:

$$\epsilon_0 = \alpha_0 + \alpha_1 + \alpha_2 = \eta$$
 $\epsilon_1 = (2n - 2)\alpha_0 - 2\alpha_2$ $\epsilon_2 = \alpha_0 - \alpha_1 + \alpha_2$

Hence, we have the adjacency matrices acting by

$$e \mapsto (2n-2)e$$
 $e \mapsto e$

$$g \mapsto g \,\forall g \in D_4$$
 $r^i \mapsto -2r^i$ $r^i \mapsto r^i$
$$sr^i \mapsto 0$$
 $sr^i \mapsto -sr^i$