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|
X
W Take I' = Z5 = {(i,...,iy) | i1,...,ip = 0,1}, denote ¢ = (0,...,0,1,0,...,0) and take S = {g} ;.




Quantum symmetries of Cayley graphs

—DEF-

Quantum automorphism group of a graph
C(Aut* G) = C*(w;; | uu* = 1 = u*u, m(u ® u) = um,un = n, uA = Au).
j m=1

[Banica ’05]
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Cayley graphs

If " is abelian, then Irr I forms an eigenbasis for A. Given y € Irr I, we have

o
Q A=) x(kH.
o keS
[Lovasz ’75, Babai 79]
Hypercube
TakeI' = Z5 ={(iy,....,iy) | i1,...,i, = 0,1}, denote ¢ = (0,...,0,1,0,...,0) and take S = {g}L;.
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Quantum symmetries of Cayley graphs

—DEF-

Quantum automorphism group of a graph
C(Aut* G) = C*(w;; | uu* = 1 = u*u, m(u ® u) = um,un = n, uA = Au).
j m=1

[Banica ’05]



Quantum symmetries of Cayley graphs

C(Aut* G) = C*(wj | uu”™ =1 = u'u,m(u ® u) = um,un = n,ul = Au).

Intertwiners in the basis (y,):

Axy = Ag)(gs m()(g ® xn) = Xgho n= Xe



Quantum symmetries of Cayley graphs

C(Aut* G) = C*(wj | uu”™ =1 = u'u,m(u ® u) = um,un = n,ul = Au).

Intertwiners in the basis (y,):

A)(g

=1

gXg m()(g ® Xn) = Xgh> n= Xe

Take I = Z5 = {(iy, . .

i) |,

Hypercube
,i, = 0,1}, denote ¢ = (0,...,0,1,0,...,0) and take S = {g}- ;.

.....

THM-

Aut™ Q, = 0,

[Banica-Bichon-Collins ’07]



Some other Cayley graphs
Denote Z7, = {(iy,...,i,) | i{,...,i, =0,....m—1}, ¢=1(0,...,0,1,0,...,0), =(1,1,...,1)

Hypercube Q,
r=275S={l; — inv.subspacesVj = span{)(eil.._eik}i1<_..<,~k (i.e. Vi = span{y. }ir

Halved/squared hypercube %Qnﬂ = Q?
=75, S={e}l; ulaghe; — inv. subspaces Vi + Vysy g (ie. V; = span{y: iy u i)

1 _
Aut” 5Qn+1 — SOn-:l

“THM—

[G.22]




Some other Cayley graphs
Denote Z7, = {(iy,...,i,) | i{,...,i, =0,....m—1}, ¢=1(0,...,0,1,0,...,0), =(1,1,...,1)

Hypercube Q,
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Some other Cayley graphs
Denote Z7, = {(iy,...,i,) | i{,...,i, =0,....m—1}, ¢=1(0,...,0,1,0,...,0), :=(1,1,...,1)
Hypercube Q,
I'=72%S=1{¢}-; — inv.subspacesV} = span{)(eil...eik},-1<...<,-k (i.e. Vi = span{x. }iL{)
Halved/squared hypercube %Qnﬂ = Q?
['=75,S ={e}- vieelic; — inv.subspaces Vi +V, 1 (ie. Vi = span{ . §i=1 u{x})

Folded hypercube FQ,_ 4
P=25,S={g}L,uf} — inv.subspacesVy_y+ Vo (ie. Vi = span{ie }ioy U {xec bicy)

Hamming graph H(n,m)

_n ¢ _ - _ . :
I'=27},S={€}1, nje1..m — inv.subspacesVj = SPANY 1 ik 3iy <-r iy onfi=1,m—1 (i-€-
ll lk

THM-

Aut®” H(n,n) = S} S,

[G.22]




Anticommutative hypercube
For the classical hypercube, we have vertex set T' = Z7, so
C(T) = C*(e | eiej = Gjei. € = ¢;)

=C"(xp- 8 €T | xgxn = Xgh» Xg=t = Xg)
— C*()(l | XIX] — X])(I’Xlz = 1,Xi* = Xl)



Anticommutative hypercube

For the classical hypercube, we have vertex set T' = Z7, so

C(T) = C* (e | eej = Gyje1. ¢ =€)
=C"(Xg & €T | XeXn = Xgh» Xg~1 = Xg)
=C*ilxixi=xixo XA = LX = x)
Twist:
CO) =C*"Ca |l xixi=—xixo XA =L = x)



Twisting Cayley graphs of abelian groups

A finite quantum space X is given by a finite-dimensional C*-algebra C(X). Every such algebra is
equipped by a unique structure of a special symmetric Frobenius algebra. The associated Hilbert
space is denoted by (X). It induces an operation on linear operators A, B: P(X) - I*(X) by
A+B=m(A® B)m' called the Schur product.

A directed quantum graph is a quantum space X equipped with an adjacency operator
A:I?(X) — I2(X) satisfying A+ A = A = A™.



Twisting Cayley graphs of abelian groups

A finite quantum space X is given by a finite-dimensional C*-algebra C(X). Every such algebra is
equipped by a unique structure of a special symmetric Frobenius algebra. The associated Hilbert
space is denoted by (X). It induces an operation on linear operators A, B: P(X) - I*(X) by
A+B=m(A® B)m' called the Schur product.

A directed quantum graph is a quantum space X equipped with an adjacency operator
A:I?(X) — I2(X) satisfying A+ A = A = A™.

Recall CI)=C"(xp- 8 €T | xgxn = Xgh> Xg1 = Xg)-

For any unitary bicharacter o on T, define C(I') = C*(Xg & €T | OgnXoXn = Xgh» Xg~1 = Xg)-
Define A: C(I') — C(I') by AXg = Agxg With Ag = Y cs )(g(k_l).

‘ Let I be a finite abelian group, o a unitary bicharacter on ' and S C T'. Then the adjacency

= operator given as above defines a directed quantum graph on I, which is quantum isomorphic to
T the classical Cayley graph Cay(T, S). Its quantum automorphism group is the 2-cocycle twist of

‘ the quantum automorphism group Aut® Cay(T, S) of the classical Cayley graph Cay(T,S).

[G.22]




Association schemes

Consider the set X = {1,...,n} with n € IN. A d-class association scheme over X is a set
A ={Ap, Aq,..., Ay} of n x n matrices A; such that

1. All A; have entries in {0, 1},

2. Ay =1

3. Z?:O A; = ], where Jis the all ones matrix
4. AiT € A for every i,

5. AjA; € span A for every i, ,

A graph is called distance regular if partitioning pairs of vertices according to their distance forms
an association scheme.

A translation association scheme is an association scheme A = {A;} over some group I such that
all A; are Cayley.



Translation association schemes and duality

Consider the set X = {1,...,n} with n € IN. A d-class association scheme over X is a set
A ={Ag, A4,..., Ay} of nxnadjacency matrices A; such that Ay =1, Z?:O A;=J Al € A,
AjAj € span A.

A translation association scheme is an association scheme A = {A;} over some group I such that
all A; are Cayley (corresponding to some sets S; C I).

The characters y, of I form a common eigenbasis of A. So, we can denote the common eigenspaces

by i
Vj — Span{)(g | g€ Sj}-

Claim. The sets §j define a new translation association scheme called the dual.



Duality for groups vs. schemes

Abelian groups:
(1) = span{eg}yer is equipped with two products:

€g - €y = Oghey, €y * €y = Egy.
Change of basis (Fourier transform) swaps the products:
Xg Xh = Xgh> Xg* Xn = n5gh)(g-
Group schemes:

Let I be a group. We associate to it a group scheme given by A = {A%}.cr, where A8 is the Cayley
graph of S = {g}.

Observe: We have Aée;, = egn = €y * ey Moreover,

ASAM = A8h A% AN =5,,A8.



Duality for groups vs. schemes

Abelian groups:

€g €h = 5ghe ’ €g * €y = €gp - Xg " Xh = Xgh> Xg* Xnh = n5gh)(g-



Duality for groups vs. schemes

Abelian groups:

€g €h = 5ghe ’ €g * €y = €gp - Xg " Xh = Xgh> Xg* Xnh = négh)(g-
Group schemes:

Taking S = {g} means Afej, = e, * . Then

ASAM = Ash A8 . AP =5

hAS.

Translation schemes

In general, taking any S, we have Ae; = Y resern = (Dreser) * en-



Duality for quantum groups and quantum group schemes

Let X be a finite quantum space. A d-class cocommutative quantum association scheme (CQAS) is a
set A ={A,, Ay, ..., Az} with A;: I°(X) — I(X) such that

1. A = A, A; « A; = A for every i,
2. AO - I,
d
3. Y=o Ai = J;
4. A;r € A for every i,
5. AjA; € span A for every i, .

A finite quantum group T is determined by a finite-dimensional Hopf *-algebra C(T')

— two kinds of multiplication in I2(G): Xey, X%

We define the dual quantum group by swapping the two products.



Duality for quantum groups and quantum group schemes

Let X be a finite quantum space. A d-class cocommutative quantum association scheme (CQAS) is a
set A ={Aj, Ay,..., Azt with A;:[°(X) — [2(X) such that A; = Af, A;« A; = A;, Ag =1,
Y4, A =T Al €A, AA; € spanA.

A finite quantum group T is determined by a finite-dimensional Hopf x-algebra C(T")

— two kinds of multiplication in I2(G): Xey, X*Y.

For any p € I>(T") such that p+ p = p = p*, the map x — p * x defines a quantum graph. We call it
the Cayley quantum graph.

A translation QCAS over some quantum group I' means that all A; are Cayley.



Example: Complete bipartite graph
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Example: Complete bipartite graph — Cayley w.r.t.

I = Zn X Zz
So =1(0,0)} S1=1G,1) |i € Z,} S, =1{(,0) | i € Z, \{0}}
n-1 0 1 # 0,
M= D, wip@b) =1y ) o = I” 1=0.7=0,
(a,b)eS a=0 -n i=0,j=-1.
So = {(0,0)} Sy = 4G, j)|i=0} S, = {(0,—1)}
o Yo ./'
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Example: Complete bipartite graph — Cayley w.r.t.

I = Zn X Zz
So = 1(0,0); S1=1G1) [ i € Zy} So =1(1,0) | i € Z, \ {0}
ap = €(0,0) ap = ZieZn €3i,1) A = Yizo €3i,0)

n=1 0 1+0,
/1(1',]') = Z z'(i,j)(a, b)_l — (_1)1 Z w4 = in 1 = (),j =0,
(a,b)GS a=0 —n i — 0, - _1.

So = {(0.0)} S; ={G.j) i =0} S, = {(0.-1)}
€ = X(0,0) = % t o1 + €1 = Diz0 XGij) = (2n—2)ay — 2ay € = X(0.1) = G — o +



Example: Complete bipartite graph — Cayley w.r.t. D,

- = % &

So = {e} S ={srk|k=0,....,n—1} S,={*lk=1,...,n—1}
n—1 n—1
Ay = € a1 = k=0 Esk Ay = D=1 €k

Eigenvalues and eigenspaces do not depend on T, so the following is a basis of span{ay, a1, a2} C CDy
by orthogonal projections:

Eg=qy+og+a,=n €1 = (2n—2)ay — 29 € =ay— o +a
Hence, we have the adjacency matrices acting by
e—> (2n—2)e e>e
g gVg €Dy ' —2r s rt

st =0 st > —sr'



