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Cayley graphs
D
EF

Cayley graph
Group Γ, set 𝑆 ⊂ Γ → 𝑉 = Γ, 𝐸 = {(𝑔, 𝑘𝑔) ∣ 𝑔 ∈ Γ, 𝑘 ∈ 𝑆}.

𝐴𝑔ℎ = { 1 𝑔 = 𝑘ℎ for some 𝑔 ∈ Γ,
0 otherwise.



Cayley graphs
D
EF

Cayley graph
Group Γ, set 𝑆 ⊂ Γ → 𝑉 = Γ, 𝐸 = {(𝑔, 𝑘𝑔) ∣ 𝑔 ∈ Γ, 𝑘 ∈ 𝑆}.

𝐴𝑔ℎ = { 1 𝑔 = 𝑘ℎ for some 𝑔 ∈ Γ,
0 otherwise.

EX

Hypercube
Take Γ = ℤ𝑛

2 = {(𝑖1, . . . , 𝑖𝑛) ∣ 𝑖1, . . . , 𝑖𝑛 = 0, 1}, denote 𝜖𝑖 = (0, . . . , 0, 1, 0, . . . , 0) and take 𝑆 = {𝜖𝑖}𝑛𝑖=1.



Quantum symmetries of Cayley graphs
D
EF

Quantum automorphism group of a graph

𝐶(Aut+ 𝐺) = 𝐶∗(𝑢𝑖𝑗 ∣ 𝑢𝑢∗ = 1 = 𝑢∗𝑢, 𝑚(𝑢 ⊗ 𝑢) = 𝑢𝑚, 𝑢𝜂 = 𝜂, 𝑢𝐴 = 𝐴𝑢).
[Banica ’05]
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Group Γ, set 𝑆 ⊂ Γ → 𝑉 = Γ, 𝐸 = {(𝑔, 𝑘𝑔) ∣ 𝑔 ∈ Γ, 𝑘 ∈ 𝑆}.

𝐴𝑔ℎ = { 1 𝑔 = 𝑘ℎ for some 𝑔 ∈ Γ,
0 otherwise.
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If Γ is abelian, then Irr Γ forms an eigenbasis for 𝐴. Given 𝜒 ∈ Irr Γ, we have

𝜆𝜒 = ∑
𝑘∈𝑆

𝜒(𝑘−1).

[Lovász ’75, Babai ’79]



Cayley graphs
PR

O
P

If Γ is abelian, then Irr Γ forms an eigenbasis for 𝐴. Given 𝜒 ∈ Irr Γ, we have
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Hypercube
Take Γ = ℤ𝑛

2 = {(𝑖1, . . . , 𝑖𝑛) ∣ 𝑖1, . . . , 𝑖𝑛 = 0, 1}, denote 𝜖𝑖 = (0, . . . , 0, 1, 0, . . . , 0) and take 𝑆 = {𝜖𝑖}𝑛𝑖=1.

𝜒(𝑗1,...,𝑗𝑛)(𝑖1, . . . , 𝑖𝑛) = (−1)𝑖1𝑗1+···+𝑖𝑛𝑗𝑛

𝜆(𝑗1,...,𝑗𝑛) =
𝑛
∑
𝑘=1

(−1)𝑗𝑘 = 𝑛 − 2#{non-zero 𝑗𝑖’s}.

→ Eigenspaces 𝑉𝑘 = span{𝜒(𝑗1,...,𝑗𝑛) ∣ exactly 𝑘 𝑗𝑖’s are non-zero}.
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𝐶(Aut+ 𝐺) = 𝐶∗(𝑢𝑖𝑗 ∣ 𝑢𝑢∗ = 1 = 𝑢∗𝑢, 𝑚(𝑢 ⊗ 𝑢) = 𝑢𝑚, 𝑢𝜂 = 𝜂, 𝑢𝐴 = 𝐴𝑢).
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𝐶(Aut+ 𝐺) = 𝐶∗(𝑢𝑖𝑗 ∣ 𝑢𝑢∗ = 1 = 𝑢∗𝑢, 𝑚(𝑢 ⊗ 𝑢) = 𝑢𝑚, 𝑢𝜂 = 𝜂, 𝑢𝐴 = 𝐴𝑢).
[Banica ’05]

Intertwiners in the basis (𝜒𝑔):

𝐴𝜒𝑔 = 𝜆𝑔𝜒𝑔, 𝑚(𝜒𝑔 ⊗ 𝜒ℎ) = 𝜒𝑔ℎ, 𝜂 = 𝜒𝑒.
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𝐶(Aut+ 𝐺) = 𝐶∗(𝑢𝑖𝑗 ∣ 𝑢𝑢∗ = 1 = 𝑢∗𝑢, 𝑚(𝑢 ⊗ 𝑢) = 𝑢𝑚, 𝑢𝜂 = 𝜂, 𝑢𝐴 = 𝐴𝑢).
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Intertwiners in the basis (𝜒𝑔):

𝐴𝜒𝑔 = 𝜆𝑔𝜒𝑔, 𝑚(𝜒𝑔 ⊗ 𝜒ℎ) = 𝜒𝑔ℎ, 𝜂 = 𝜒𝑒.

EX

Hypercube
Take Γ = ℤ𝑛

2 = {(𝑖1, . . . , 𝑖𝑛) ∣ 𝑖1, . . . , 𝑖𝑛 = 0, 1}, denote 𝜖𝑖 = (0, . . . , 0, 1, 0, . . . , 0) and take 𝑆 = {𝜖𝑖}𝑛𝑖=1.
→ Eigenspaces 𝑉𝑘 = span{𝜒(𝑗1,...,𝑗𝑛) ∣ exactly 𝑘 𝑗𝑖’s are non-zero}.

TH
M Aut+ 𝑄𝑛 = 𝑂−1

𝑛
[Banica–Bichon–Collins ’07]



Some other Cayley graphs
Denote ℤ𝑛

𝑚 = {(𝑖1, . . . , 𝑖𝑛) ∣ 𝑖1, . . . , 𝑖𝑛 = 0, . . . , 𝑚 − 1}, 𝜖𝑖 = (0, . . . , 0, 1, 0, . . . , 0), 𝜄 = (1, 1, . . . , 1)

Hypercube 𝑄𝑛
Γ = ℤ𝑛

2, 𝑆 = {𝜖𝑖}𝑛𝑖=1 → inv. subspaces 𝑉𝑘 = span{𝜒𝜖𝑖1 ···𝜖𝑖𝑘 }𝑖1<···<𝑖𝑘 (i.e. 𝑉1 = span{𝜒𝜖𝑖}
𝑛
𝑖=1)

Halved/squared hypercube 1
2𝑄𝑛+1 = 𝑄2

𝑛

Γ = ℤ𝑛
2, 𝑆 = {𝜖𝑖}𝑛𝑖=1 ∪ {𝜖𝑖𝜖𝑗}𝑖<𝑗 → inv. subspaces 𝑉𝑘 + 𝑉𝑛+1−𝑘 (i.e. 𝑉̃1 = span{𝜒𝜖𝑖}

𝑛
𝑖=1 ∪ {𝜒𝜄})

TH
M Aut+ 1

2
𝑄𝑛+1 = 𝑆𝑂−1

𝑛+1

[G. ’22]
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𝑚 = {(𝑖1, . . . , 𝑖𝑛) ∣ 𝑖1, . . . , 𝑖𝑛 = 0, . . . , 𝑚 − 1}, 𝜖𝑖 = (0, . . . , 0, 1, 0, . . . , 0), 𝜄 = (1, 1, . . . , 1)

Hypercube 𝑄𝑛
Γ = ℤ𝑛

2, 𝑆 = {𝜖𝑖}𝑛𝑖=1 → inv. subspaces 𝑉𝑘 = span{𝜒𝜖𝑖1 ···𝜖𝑖𝑘 }𝑖1<···<𝑖𝑘 (i.e. 𝑉1 = span{𝜒𝜖𝑖}
𝑛
𝑖=1)

Halved/squared hypercube 1
2𝑄𝑛+1 = 𝑄2

𝑛

Γ = ℤ𝑛
2, 𝑆 = {𝜖𝑖}𝑛𝑖=1 ∪ {𝜖𝑖𝜖𝑗}𝑖<𝑗 → inv. subspaces 𝑉̃𝑘 = 𝑉𝑘 + 𝑉𝑛+1−𝑘 (i.e. 𝑉̃1 = span{𝜒𝜖𝑖}

𝑛
𝑖=1 ∪ {𝜒𝜄})

Folded hypercube 𝐹𝑄𝑛+1
Γ = ℤ𝑛

2, 𝑆 = {𝜖𝑖}𝑛𝑖=1 ∪ {𝜄} → inv. subspaces 𝑉2𝑘−1 + 𝑉2𝑘 (i.e. 𝑉̃1 = span{𝜒𝜖𝑖}
𝑛
𝑖=1 ∪ {𝜒𝜖𝑖𝜖𝑗}𝑖<𝑗)

TH
M Aut+ 𝐹𝑄𝑛+1 = 𝑃𝑂−1

𝑛+1
[Schmidt ’20, G. ’22]
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𝑛
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Folded hypercube 𝐹𝑄𝑛+1
Γ = ℤ𝑛

2, 𝑆 = {𝜖𝑖}𝑛𝑖=1 ∪ {𝜄} → inv. subspaces 𝑉2𝑘−1 + 𝑉2𝑘 (i.e. 𝑉̃1 = span{𝜒𝜖𝑖}
𝑛
𝑖=1 ∪ {𝜒𝜖𝑖𝜖𝑗}𝑖<𝑗)

Hamming graph 𝐻(𝑛, 𝑚)
Γ = ℤ𝑛

𝑚, 𝑆 = {𝜖𝑗𝑖 }𝑖=1,...,𝑛;𝑗=1,...,𝑚 → inv. subspaces 𝑉𝑘 = span{𝜒
𝜖 𝑗1𝑖1 ···𝜖

𝑗𝑘
𝑖𝑘
}𝑖1<···<𝑖𝑘;𝑗1,...,𝑗𝑘=1,...,𝑚−1 (i.e.

𝑉1 = span{𝜒 𝑗
𝜖𝑖}𝑖=1,...𝑛;𝑗=1,...,𝑚−1)

TH
M Aut+ 𝐻(𝑛, 𝑛) = 𝑆+𝑚 ≀ 𝑆𝑛

[G. ’22]



Anticommutative hypercube
For the classical hypercube, we have vertex set Γ = ℤ𝑛

2, so

𝐶(Γ) = 𝐶∗(𝑒𝑖 ∣ 𝑒𝑖𝑒𝑗 = 𝛿𝑖𝑗𝑒𝑖, 𝑒∗𝑖 = 𝑒𝑖)
= 𝐶∗(𝜒𝑔, 𝑔 ∈ Γ ∣ 𝜒𝑔𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔−1 = 𝜒∗

𝑔 )

= 𝐶∗(𝜒𝑖 ∣ 𝜒𝑖𝜒𝑗 = 𝜒𝑗𝜒𝑖, 𝜒2
𝑖 = 1, 𝜒∗

𝑖 = 𝜒𝑖)



Anticommutative hypercube
For the classical hypercube, we have vertex set Γ = ℤ𝑛

2, so

𝐶(Γ) = 𝐶∗(𝑒𝑖 ∣ 𝑒𝑖𝑒𝑗 = 𝛿𝑖𝑗𝑒𝑖, 𝑒∗𝑖 = 𝑒𝑖)
= 𝐶∗(𝜒𝑔, 𝑔 ∈ Γ ∣ 𝜒𝑔𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔−1 = 𝜒∗

𝑔 )

= 𝐶∗(𝜒𝑖 ∣ 𝜒𝑖𝜒𝑗 = 𝜒𝑗𝜒𝑖, 𝜒2
𝑖 = 1, 𝜒∗

𝑖 = 𝜒𝑖)

Twist:
𝐶(Γ̆) = 𝐶∗(𝜒𝑖 ∣ 𝜒𝑖𝜒𝑗 = −𝜒𝑗𝜒𝑖, 𝜒2

𝑖 = 1, 𝜒∗
𝑖 = 𝜒𝑖)



Twisting Cayley graphs of abelian groups
D
EF

A finite quantum space 𝑋 is given by a finite-dimensional C*-algebra 𝐶(𝑋). Every such algebra is
equipped by a unique structure of a special symmetric Frobenius algebra. The associated Hilbert
space is denoted by 𝑙2(𝑋). It induces an operation on linear operators 𝐴, 𝐵: 𝑙2(𝑋) → 𝑙2(𝑋) by
𝐴 • 𝐵 = 𝑚(𝐴 ⊗ 𝐵)𝑚† called the Schur product.

D
EF A directed quantum graph is a quantum space 𝑋 equipped with an adjacency operator

𝐴: 𝑙2(𝑋) → 𝑙2(𝑋) satisfying 𝐴 • 𝐴 = 𝐴 = 𝐴∗.
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A finite quantum space 𝑋 is given by a finite-dimensional C*-algebra 𝐶(𝑋). Every such algebra is
equipped by a unique structure of a special symmetric Frobenius algebra. The associated Hilbert
space is denoted by 𝑙2(𝑋). It induces an operation on linear operators 𝐴, 𝐵: 𝑙2(𝑋) → 𝑙2(𝑋) by
𝐴 • 𝐵 = 𝑚(𝐴 ⊗ 𝐵)𝑚† called the Schur product.

D
EF A directed quantum graph is a quantum space 𝑋 equipped with an adjacency operator

𝐴: 𝑙2(𝑋) → 𝑙2(𝑋) satisfying 𝐴 • 𝐴 = 𝐴 = 𝐴∗.

Recall 𝐶(Γ) = 𝐶∗(𝜒𝑔, 𝑔 ∈ Γ ∣ 𝜒𝑔𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔−1 = 𝜒∗
𝑔 ).

For any unitary bicharacter 𝜎 on Γ, define 𝐶(Γ̆) = 𝐶∗(𝜒𝑔, 𝑔 ∈ Γ ∣ 𝜎𝑔ℎ𝜒𝑔𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔−1 = 𝜒∗
𝑔 ).

Define 𝐴: 𝐶(Γ̆) → 𝐶(Γ̆) by 𝐴𝜒𝑔 = 𝜆𝑔𝜒𝑔 with 𝜆𝑔 = ∑𝑘∈𝑆 𝜒𝑔(𝑘−1).

TH
M

Let Γ be a finite abelian group, 𝜎 a unitary bicharacter on Γ and 𝑆 ⊂ Γ. Then the adjacency
operator given as above defines a directed quantum graph on Γ̆, which is quantum isomorphic to
the classical Cayley graph Cay(Γ, 𝑆). Its quantum automorphism group is the 2-cocycle twist of
the quantum automorphism group Aut+ Cay(Γ, 𝑆) of the classical Cayley graph Cay(Γ, 𝑆).

[G. ’22]



Association schemes
D
EF
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Association scheme
Consider the set 𝑋 = {1, . . . , 𝑛} with 𝑛 ∈ ℕ. A 𝑑-class association scheme over 𝑋 is a set
𝗔 = {𝐴0, 𝐴1, . . . , 𝐴𝑑} of 𝑛 × 𝑛 matrices 𝐴𝑖 such that

1. All 𝐴𝑖 have entries in {0, 1},
2. 𝐴0 = 𝐼,

3. ∑𝑑
𝑖=0 𝐴𝑖 = 𝐽, where 𝐽 is the all ones matrix

4. 𝐴T
𝑖 ∈ 𝗔 for every 𝑖,

5. 𝐴𝑖𝐴𝑗 ∈ span𝗔 for every 𝑖, 𝑗,

D
EF

Distance regular graph
A graph is called distance regular if partitioning pairs of vertices according to their distance forms
an association scheme.

D
EF

Translation association scheme
A translation association scheme is an association scheme 𝗔 = {𝐴𝑖} over some group Γ such that
all 𝐴𝑖 are Cayley.



Translation association schemes and duality
D
EF

Consider the set 𝑋 = {1, . . . , 𝑛} with 𝑛 ∈ ℕ. A 𝑑-class association scheme over 𝑋 is a set
𝗔 = {𝐴0, 𝐴1, . . . , 𝐴𝑑} of 𝑛 × 𝑛 adjacency matrices 𝐴𝑖 such that 𝐴0 = 𝐼, ∑𝑑

𝑖=0 𝐴𝑖 = 𝐽, 𝐴T
𝑖 ∈ 𝗔,

𝐴𝑖𝐴𝑗 ∈ span𝗔.

D
EF A translation association scheme is an association scheme 𝗔 = {𝐴𝑖} over some group Γ such that

all 𝐴𝑖 are Cayley (corresponding to some sets 𝑆𝑖 ⊂ Γ).

The characters 𝜒𝑔 of Γ form a common eigenbasis of 𝗔. So, we can denote the common eigenspaces
by

𝑉𝑗 = span{𝜒𝑔 ∣ 𝑔 ∈ ̃𝑆𝑗}.

Claim. The sets ̃𝑆𝑗 define a new translation association scheme called the dual.



Duality for groups vs. schemes
Abelian groups:
𝑙2(Γ) = span{𝑒𝑔}𝑔∈Γ is equipped with two products:

𝑒𝑔 ⋅ 𝑒ℎ = 𝛿𝑔ℎ𝑒𝑔, 𝑒𝑔 ∗ 𝑒ℎ = 𝑒𝑔ℎ.

Change of basis (Fourier transform) swaps the products:

𝜒𝑔 ⋅ 𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔 ∗ 𝜒ℎ = 𝑛𝛿𝑔ℎ𝜒𝑔.

Group schemes:

D
EF Let Γ be a group. We associate to it a group scheme given by 𝗔 = {𝐴𝑔}𝑔∈Γ, where 𝐴𝑔 is the Cayley

graph of 𝑆 = {𝑔}.

Observe: We have 𝐴𝑔𝑒ℎ = 𝑒𝑔ℎ = 𝑒𝑔 ∗ 𝑒ℎ. Moreover,

𝐴𝑔𝐴ℎ = 𝐴𝑔ℎ, 𝐴𝑔 • 𝐴ℎ = 𝛿𝑔ℎ𝐴𝑔.



Duality for groups vs. schemes
Abelian groups:

𝑒𝑔 ⋅ 𝑒ℎ = 𝛿𝑔ℎ𝑒𝑔, 𝑒𝑔 ∗ 𝑒ℎ = 𝑒𝑔ℎ → 𝜒𝑔 ⋅ 𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔 ∗ 𝜒ℎ = 𝑛𝛿𝑔ℎ𝜒𝑔.



Duality for groups vs. schemes
Abelian groups:

𝑒𝑔 ⋅ 𝑒ℎ = 𝛿𝑔ℎ𝑒𝑔, 𝑒𝑔 ∗ 𝑒ℎ = 𝑒𝑔ℎ → 𝜒𝑔 ⋅ 𝜒ℎ = 𝜒𝑔ℎ, 𝜒𝑔 ∗ 𝜒ℎ = 𝑛𝛿𝑔ℎ𝜒𝑔.

Group schemes:
Taking 𝑆 = {𝑔} means 𝐴𝑔𝑒ℎ = 𝑒𝑔 ∗ 𝑒ℎ. Then

𝐴𝑔𝐴ℎ = 𝐴𝑔ℎ, 𝐴𝑔 • 𝐴ℎ = 𝛿𝑔ℎ𝐴𝑔.

Translation schemes
In general, taking any 𝑆, we have 𝐴𝑒ℎ = ∑𝑘∈𝑆 𝑒𝑘ℎ = (∑𝑘∈𝑆 𝑒𝑘) ∗ 𝑒ℎ.



Duality for quantum groups and quantum group schemes
D
EF

IN
IT
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Cocommutative quantum association scheme
Let 𝑋 be a finite quantum space. A 𝑑-class cocommutative quantum association scheme (CQAS) is a
set 𝗔 = {𝐴0, 𝐴1, . . . , 𝐴𝑑} with 𝐴𝑖: 𝑙2(𝑋) → 𝑙2(𝑋) such that

1. 𝐴𝑖 = 𝐴∗
𝑖 , 𝐴𝑖 • 𝐴𝑖 = 𝐴𝑖 for every 𝑖,

2. 𝐴0 = 𝐼,

3. ∑𝑑
𝑖=0 𝐴𝑖 = 𝐽,

4. 𝐴†
𝑖 ∈ 𝗔 for every 𝑖,

5. 𝐴𝑖𝐴𝑗 ∈ span𝗔 for every 𝑖, 𝑗.
[G. ’24]

D
EF

Finite quantum group
A finite quantum group Γ is determined by a finite-dimensional Hopf ∗-algebra 𝐶(Γ)

→ two kinds of multiplication in 𝑙2(𝐺): 𝑥 • 𝑦, 𝑥 ∗ 𝑦.
We define the dual quantum group by swapping the two products.



Duality for quantum groups and quantum group schemes
D
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Cocommutative quantum association scheme
Let 𝑋 be a finite quantum space. A 𝑑-class cocommutative quantum association scheme (CQAS) is a
set 𝗔 = {𝐴0, 𝐴1, . . . , 𝐴𝑑} with 𝐴𝑖: 𝑙2(𝑋) → 𝑙2(𝑋) such that 𝐴𝑖 = 𝐴∗

𝑖 , 𝐴𝑖 • 𝐴𝑖 = 𝐴𝑖, 𝐴0 = 𝐼,
∑𝑑

𝑖=0 𝐴𝑖 = 𝐽, 𝐴†
𝑖 ∈ 𝗔, 𝐴𝑖𝐴𝑗 ∈ span𝗔.

[G. ’24]
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Finite quantum group
A finite quantum group Γ is determined by a finite-dimensional Hopf ∗-algebra 𝐶(Γ)

→ two kinds of multiplication in 𝑙2(𝐺): 𝑥 • 𝑦, 𝑥 ∗ 𝑦.
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Cayley quantum graph
For any 𝑝 ∈ 𝑙2(Γ) such that 𝑝 • 𝑝 = 𝑝 = 𝑝∗, the map 𝑥 ↦ 𝑝 ∗ 𝑥 defines a quantum graph. We call it
the Cayley quantum graph.

D
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Quantum translation association scheme
A translation QCAS over some quantum group Γ means that all 𝐴𝑖 are Cayley.



Example: Complete bipartite graph



Example: Complete bipartite graph – Cayley w.r.t.
Γ = ℤ𝑛 × ℤ2

𝑆0 = {(0, 0)} 𝑆1 = {(𝑖, 1) ∣ 𝑖 ∈ ℤ𝑛} 𝑆2 = {(𝑖, 0) ∣ 𝑖 ∈ ℤ𝑛 ∖ {0}}

𝜆(𝑖,𝑗) = ∑
(𝑎,𝑏)∈𝑆

𝜏(𝑖,𝑗)(𝑎, 𝑏)−1 = (−1)𝑗
𝑛−1
∑
𝑎=0

𝜔𝑖𝑎 = {
0 𝑖 ≠ 0,
𝑛 𝑖 = 0, 𝑗 = 0,
−𝑛 𝑖 = 0, 𝑗 = −1.

̃𝑆0 = {(0, 0)} ̃𝑆1 = {(𝑖, 𝑗) ∣ 𝑖 ≠ 0} ̃𝑆2 = {(0, −1)}



Example: Complete bipartite graph – Cayley w.r.t.
Γ = ℤ𝑛 × ℤ2

𝑆0 = {(0, 0)} 𝑆1 = {(𝑖, 1) ∣ 𝑖 ∈ ℤ𝑛} 𝑆2 = {(𝑖, 0) ∣ 𝑖 ∈ ℤ𝑛 ∖ {0}}

𝛼0 = 𝑒(0,0) 𝛼1 = ∑𝑖∈ℤ𝑛
𝑒(𝑖,1) 𝛼2 = ∑𝑖≠0 𝑒(𝑖,0)

𝜆(𝑖,𝑗) = ∑
(𝑎,𝑏)∈𝑆

𝜏(𝑖,𝑗)(𝑎, 𝑏)−1 = (−1)𝑗
𝑛−1
∑
𝑎=0

𝜔𝑖𝑎 = {
0 𝑖 ≠ 0,
𝑛 𝑖 = 0, 𝑗 = 0,
−𝑛 𝑖 = 0, 𝑗 = −1.

̃𝑆0 = {(0, 0)} ̃𝑆1 = {(𝑖, 𝑗) ∣ 𝑖 ≠ 0} ̃𝑆2 = {(0, −1)}
𝜖0 = 𝜒(0,0) = 𝛼0 + 𝛼1 + 𝛼2 𝜖1 = ∑𝑖≠0 𝜒(𝑖,𝑗) = (2𝑛 − 2)𝛼0 − 2𝛼2 𝜖2 = 𝜒(0,1) = 𝛼0 − 𝛼1 + 𝛼2



Example: Complete bipartite graph – Cayley w.r.t. 𝐷𝑛

𝑆0 = {𝑒} 𝑆1 = {𝑠𝑟𝑘 ∣ 𝑘 = 0, . . . , 𝑛 − 1} 𝑆2 = {𝑟𝑘 ∣ 𝑘 = 1, . . . , 𝑛 − 1}

𝛼0 = 𝑒𝑒 𝛼1 = ∑𝑛−1
𝑘=0 𝑒𝑠𝑟𝑘 𝛼2 = ∑𝑛−1

𝑘=1 𝑒𝑟𝑘

Eigenvalues and eigenspaces do not depend on Γ, so the following is a basis of span{𝛼0, 𝛼1, 𝛼2} ⊂ ℂ𝐷4
by orthogonal projections:

𝜖0 = 𝛼0 + 𝛼1 + 𝛼2 = 𝜂 𝜖1 = (2𝑛 − 2)𝛼0 − 2𝛼2 𝜖2 = 𝛼0 − 𝛼1 + 𝛼2
Hence, we have the adjacency matrices acting by

𝑔 ↦ 𝑔 ∀𝑔 ∈ 𝐷4

𝑒 ↦ (2𝑛 − 2)𝑒
𝑟 𝑖 ↦ −2𝑟 𝑖

𝑠𝑟 𝑖 ↦ 0

𝑒 ↦ 𝑒
𝑟 𝑖 ↦ 𝑟 𝑖

𝑠𝑟 𝑖 ↦ −𝑠𝑟 𝑖


